Aerosol Optical Properties over China from RAMS-CMAQ Model Compared with CALIOP Observations

نویسندگان

  • Tong Wu
  • Meng Fan
  • Jinhua Tao
  • Lin Su
  • Ping Wang
  • Dong Liu
  • Mingyang Li
  • Xiao Han
  • Liangfu Chen
چکیده

The horizontal and vertical distributions of aerosol optical properties over China in 2013–2015 were investigated using RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Community Multiscale Air Quality) simulations and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations. To better understand the performance of the RAMS-CMAQ model over China, comparisons with the ground-based Sun photometers AERONET (Aerosol Robotic Network), MODIS (Moderate Resolution Imaging Spectroradiometers) data and the on-board Lidar CALIOP were used for comprehensive evaluations, which could characterize the abilities of the model to simulate the spatial and vertical distributions of the AOD (Aerosol Optical Depth) as well as the optical properties for four seasons. Several high value areas (e.g., the Sichuan Basin, Taklamakan Desert, North China Plain, and Yangtze River Delta) were found over China during the study period, with the maximum mean AOD (CALIOP: ~0.7; RAMS-CMAQ: >1) in the Sichuan district. Compared with AODs of AERONET, both the CALIOP and RAMS-CMAQ AODs were underestimated, but the RAMS-CMAQ data show a better correlation with AERONET (AERONET vs. RAMS-CMAQ R: 0.69, AERONET vs. CALIOP R: 0.5). The correlation coefficients between RAMS-CMAQ and CALIOP are approximately 0.6 for all four seasons. The AEC (Aerosol Extinction Coefficient) vertical profiles over major cities and their cross sections exhibit two typical features: (1) most of the AEC peaks occurred in the lowest ~0.5 km, decreasing with increasing altitude; and (2) the RAMS-CMAQ AEC underestimated the region with high AODs in the northwest of China and overestimated the region with high AODs in the east–central plain and the central basin regions. The major difference in the AEC values of RAMS-CMAQ and CALIOP is mainly caused by the level of relative humidity and the hygroscopic growth effects of water-soluble aerosols, especially, in the Sichuan district. In general, both the column and vertical RAMS-CMAQ aerosol optical properties could be supplemented efficiently when satellite observations are not available or invalid over China in the applications of climate change and air pollution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerosol vertical distribution and optical properties over China from long- term satellite and ground-based remote sensing

The seasonal and spatial variations of vertical distribution and optical properties of aerosols over China are studied using long-term satellite observations from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) and ground-based lidar observations and Aerosol Robotic Network (AERONET) data. The CALIOP products are validated using the ground-based lidar measurements at the Semi-Arid...

متن کامل

A comparison of CMAQ-based aerosol properties with IMPROVE, MODIS, and AERONET data

[1] Evaluation of concentrations predicted by air quality models is needed to ensure that model results are compatible with observations. In this study aerosol properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations are compared with routine data from NASA satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard ...

متن کامل

Comparing multiple model-derived aerosol optical properties to collocated ground-based and satellite measurements

Anthropogenic aerosols are a key factor governing Earth’s climate, and play a central role in human-caused climate change. However, because of aerosols’ complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations...

متن کامل

Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans

Cirrus cloud absorption optical depths retrieved at 12.05 μm are compared to extinction optical depths retrieved at 0.532 μm from perfectly co-located observations of single-layered semi-transparent cirrus over ocean made by the Imaging Infrared Radiometer (IIR) and the Cloud and Aerosol Lidar with Orthogonal Polarization (CALIOP) flying on board the CALIPSO (Cloud-Aerosol Lidar and Infrared Pa...

متن کامل

Dust aerosol emission over the Sahara during summertime from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations

Dust aerosols are an important component of the climate system and a challenge to incorporate into weather and climate models. Information on the location and magnitude of dust emission remains a key information gap to inform model development. Inadequate surface observations ensure that satellite data remain the primary source of this information over extensive and remote desert regions. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017